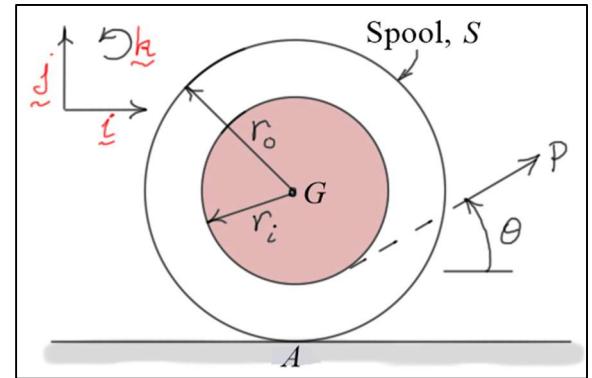


Elementary Dynamics Example #47: (Rigid Body Kinetics – Impulse & Momentum #1)

Given: $r_o = 0.4$ (m), $r_i = 0.25$ (m), $m = 100$ (kg)

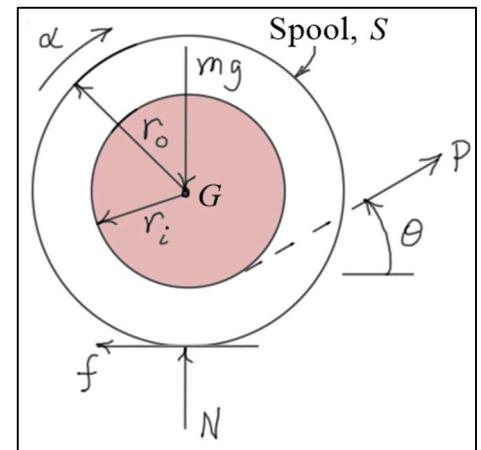

$k_G = 0.3$ (m), $P = 200$ (N), $\theta = 20$ (deg)

released from rest with $\mu_s = 0.2$, $\mu_k = 0.15$

Find: ω , the angular velocity of S after 3 seconds

Solution:

The spool is **released from rest** and when the force P is applied all **reaction forces** are **constant**. Applying the principles of linear and angular impulse and momentum to the free body diagram gives



$$\underbrace{\dot{L}_1}_{\text{zero}} + \sum \int \dot{F} dt = \dot{L}_2 \quad \underbrace{(H_G)_1}_{\text{zero}} + \sum \int \dot{M}_G dt = (H_G)_2$$

$$\rightarrow \sum \int F_x dt = (P \cos(\theta) - f) \Delta t = m(v_G)_{2x} \quad (1)$$

$$+\uparrow \sum \int F_y dt = (P \sin(\theta) + N - mg) \Delta t = m(v_G)_{2y} = 0 \quad (2)$$

$$\text{(+)} \sum \int M_G dt = (r_o f - r_i P) \Delta t = I_G \omega_2 = m k_G^2 \omega_2 \quad (3)$$

Assuming the spool **rolls without slipping**, $(v_G)_{2x}$ and ω_2 are related as follows.

$$(v_G)_{2x} = r_o \omega_2$$

After **substituting** for $(v_G)_{2x}$ in Eq. (1) and **rearranging** terms, Eqs. (1) and (3) can be written

$$\begin{aligned} (m r_o) \omega_2 + (\Delta t) f &= P \cos(\theta) \Delta t \approx 563.8156 \\ (m k_G^2) \omega_2 - (r_o \Delta t) f &= -r_i P \Delta t = -150 \end{aligned}$$

Solving gives: $\omega_2 \approx 3.02$ (rad/s) (clockwise) $f \approx 147.658 \approx 148$ (lb)

Check: Using Eq. (2), $f_{\max} = \mu_s N = \mu_s (mg - P \sin(\theta)) \approx 183$ (N) $> f$ \Rightarrow no slipping occurs

Note:

To **apply** the principles of **linear** and **angular impulse and momentum** to a problem, the **impulses** of the forces and moments must be calculated. If the forces and moments are **position** (and hence, **time**) **dependent**, it may be **quite difficult** to calculate the linear and angular impulses. In these cases, it may **not** be **practical** to use these principles.