

Elementary Engineering Mathematics

Exercises #3 – Geometry & Trigonometry

1. The polar coordinates of an object O are $r = 2700$ (ft), $\theta = 60$ (deg). Find the Cartesian coordinates x and y of O using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
2. The polar coordinates of an object are $r = 1500$ (ft), $\theta = 210$ (deg). Find the Cartesian coordinates x and y of O using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
3. The Cartesian coordinates of an object O are $x = 2750$ (ft), $y = -1500$ (ft). Find the polar coordinates r and θ of O . Express θ in both degrees and radians.
4. The Cartesian coordinates of an object O are $x = -1250$ (ft), $y = -1500$ (ft). Find the polar coordinates r and θ of O . Express θ in both degrees and radians.
5. The angle between the line $y(x) = \frac{3}{4}x - 12$ and the X axis is called θ . Find the $\sin(\theta)$, $\cos(\theta)$, $\tan(\theta)$, and θ . Express θ in both degrees and radians.
6. The lengths and angles of a two link planar robot are $\ell_1 = 2.5$ (ft), $\ell_2 = 1.75$ (ft), $\theta_1 = 60$ (deg), and $\theta_2 = 30$ (deg). Find the Cartesian coordinates x and y of B using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
7. The lengths and angles of a two link planar robot are $\ell_1 = 2.5$ (ft), $\ell_2 = 1.75$ (ft), $\theta_1 = -30$ (deg), and $\theta_2 = 60$ (deg). Find the Cartesian coordinates x and y of B using a) a calculator to evaluate the trig functions, and b) the values given for commonly used angles.
8. The XY coordinates of the end point B and the lengths of the links OA and AB are $x = 3.25$ (ft), $y = 2.4$ (ft), $\ell_1 = 2.5$ (ft), and $\ell_2 = 1.75$ (ft). Find: (a) the angles α and β , and (b) the link angles θ_1 and θ_2 for the elbow-down position. Express all angles in both degrees and radians.

9. For the slider-crank mechanism, the coordinates of points A , B , and C and the velocity of point B are

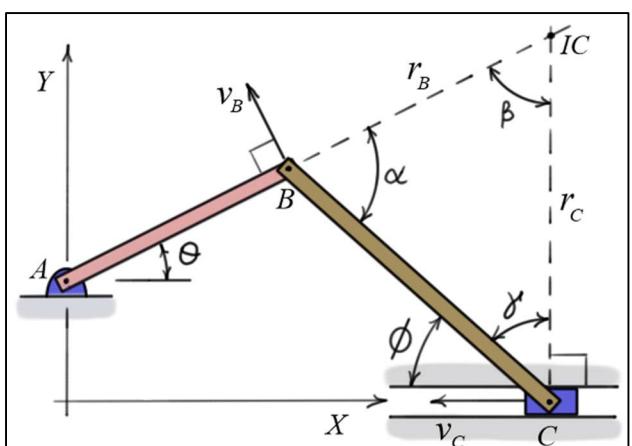
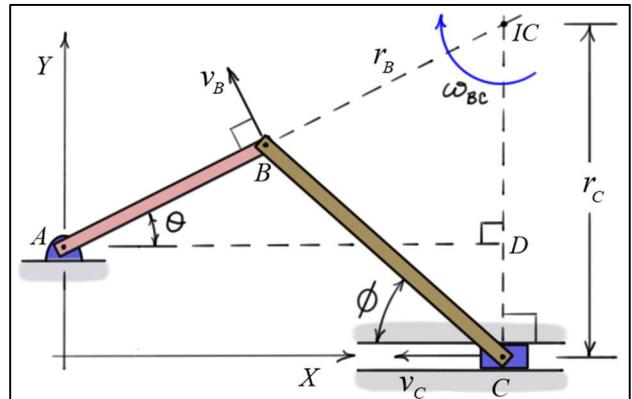
$$A(0,3) \quad B(3,7) \quad C(15,0) \quad (\text{inches})$$

$v_B = 8$ (in/s) (in the direction shown)

- a) Using the right triangle $ADIC$, find the distances r_B and r_C . Express the result in inches.

b) Find the velocity v_C . Express the result in inches/sec.

Given:
$$\frac{v_B}{r_B} = \frac{v_C}{r_C}$$



10. For the slider-crank mechanism, the coordinates of points A , B , and C and the velocity of point B are

$$A(0,3) \quad B(4,7) \quad C(14,0) \quad (\text{inches})$$

$v_B = 10$ (in/s) (in the direction shown)

- a) Find the angles α , β , and γ of the non-right triangle $BCIC$. Express the results in degrees.
 - b) Using the law of sines, find the distances r_B and r_C .
 - c) Find the velocity v_C .

Given:
$$\frac{v_B}{r_B} = \frac{v_C}{r_C}$$

