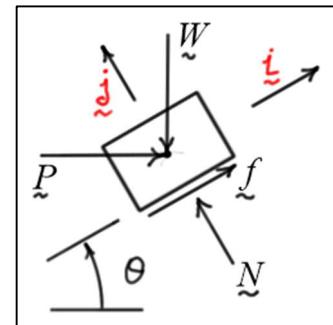
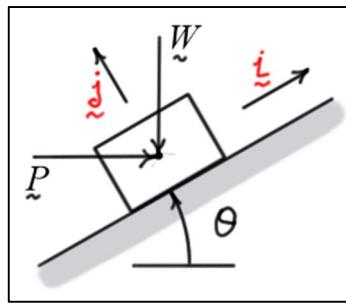


Elementary Engineering Mathematics



Exercises #4 – Two Dimensional (2D) Vectors

1. A force \underline{F} has a magnitude $|\underline{F}| = 250$ (lb) and makes an angle $\theta = 135$ (deg) with the X axis. Express the force \underline{F} in terms of the unit vectors \underline{i} and \underline{j} .
2. A force \underline{F} has a magnitude $|\underline{F}| = 100$ (lb) and makes an angle $\theta = 55$ (deg) with the X axis. Express the force \underline{F} in terms of the unit vectors \underline{i} and \underline{j} .
3. A force $\underline{F} = -50\underline{i} - 150\underline{j}$ (lbs). Find the magnitude of \underline{F} and the angle between it and the \underline{i} direction. Express the angle in both degrees and radians.
4. A force $\underline{F} = 80\underline{i} - 100\underline{j}$ (lbs). Find the magnitude of \underline{F} and the angle between it and the \underline{i} direction. Express the angle in both degrees and radians.
5. Given the three forces and angles $|\underline{F}_1| = 50$ (lbs), $\theta_1 = 20$ (deg), $|\underline{F}_2| = 100$ (lbs), $\theta_2 = 30$ (deg), and $|\underline{F}_3| = 75$ (lbs), $\theta_3 = 70$ (deg), find
 - (a) the total force \underline{F} in terms of the unit vectors \underline{i} and \underline{j} ,
 - (b) the magnitude of \underline{F} ,
 - (c) the angle that \underline{F} makes with the \underline{i} direction, and
 - (d) a unit vector in the direction of \underline{F} .
6. Given a force $\underline{F} = 150\underline{i} - 80\underline{j}$ (lbs) and a unit vector $\underline{n} = \frac{4}{5}\underline{i} + \frac{3}{5}\underline{j}$, find
 - (a) the angle between the two vectors,
 - (b) $\underline{F}_{\parallel}$ the component of \underline{F} parallel to \underline{n} , and
 - (c) \underline{F}_{\perp} the component of \underline{F} perpendicular to \underline{n} .
 Express all vectors in terms of unit vectors \underline{i} and \underline{j} .
7. Given a force $\underline{F} = 50\underline{i} + 200\underline{j}$ (lbs) and a unit vector $\underline{n} = \frac{\sqrt{3}}{2}\underline{i} + \frac{1}{2}\underline{j}$, find
 - (a) the angle between the two vectors,
 - (b) the component of \underline{F} parallel to \underline{n} , and
 - (c) the component of \underline{F} perpendicular to \underline{n} .
 Express the angle in degrees and radians and all vectors in terms of unit vectors \underline{i} and \underline{j} .
8. A force $\underline{F} = 150\underline{i} - 80\underline{j}$ (lbs) is applied at a point A whose coordinates are $(3, 2)$ (ft). Find
 - (a) M_B the moment of \underline{F} about point B whose coordinates are $(4, 5)$ (ft), and
 - (b) the perpendicular distance from B to the line of action of \underline{F} .
9. A force $\underline{F} = 50\underline{i} + 200\underline{j}$ (lbs) is applied at a point A whose coordinates are $(2, 5)$ (ft). Find
 - (a) M_B the moment of \underline{F} about point B whose coordinates are $(10, 0)$ (ft), and
 - (b) the perpendicular distance from B to the line of action of \underline{F} .

10. A block is resting on an inclined plane under the action of its weight \tilde{W} and the external force \tilde{P} . The plane exerts a friction force \tilde{f} and normal force \tilde{N} on the block holding it in place. Given $|\tilde{W}|=200$ (lbs), $|\tilde{P}|=100$ (lbs) and $\theta = 60^\circ$,

- Express the forces \tilde{W} and \tilde{P} in terms of the unit vectors \tilde{i} and \tilde{j} .
- Find the friction and normal forces \tilde{f} and \tilde{N} so $\tilde{P} + \tilde{W} + \tilde{f} + \tilde{N} = \tilde{0}$.

