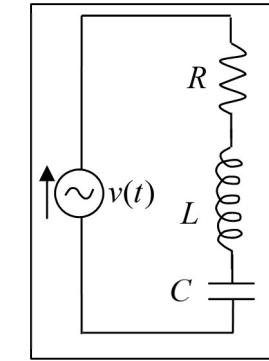

Elementary Engineering Mathematics

Exercises #5 – Application of Complex Numbers in Electrical Engineering

1. A voltage $v(t) = 110 \cos(120\pi t + \pi/3)$ volts is applied to the RC series circuit with

$R = 80 \Omega$ and $C = 50 \mu\text{F}$. Given that the total impedance is $Z = Z_R + Z_c$, find

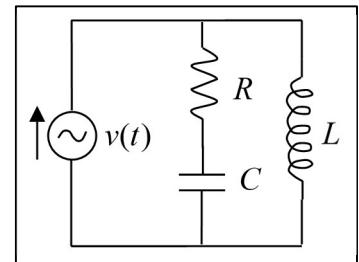
- a) Z in both rectangular and polar form
- b) I the complex current in both rectangular and polar form
- c) $i(t)$ the current as a function of time



2. A voltage $v(t) = 110 \cos(120\pi t)$ volts is applied to the RLC series circuit with

$R = 75 \Omega$, $C = 40 \mu\text{F}$, and $L = 300 \text{ mH}$. Given that the total impedance is the sum

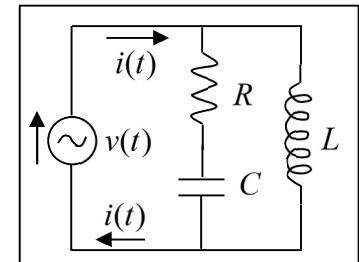
$Z = Z_R + Z_c + Z_L$, find


- a) Z in both rectangular and polar form
- b) I the complex current in both rectangular and polar form
- c) $i(t)$ the current as a function of time

3. A voltage $v(t) = 110 \cos(120\pi t)$ volts is applied to the RLC parallel circuit

with $R = 100 \Omega$, $C = 35 \mu\text{F}$, and $L = 500 \text{ mH}$. Given that the equivalent

impedance is given by the equation
$$Z_{eq} = \frac{(Z_R + Z_c)Z_L}{(Z_R + Z_c) + Z_L}$$
, find



- a) $(Z_R + Z_c)$ and Z_L in both rectangular and polar form
- a) Z_{eq} the equivalent impedance in polar form

4. A voltage $v(t) = 110 \cos(120\pi t + \pi/3)$ volts is applied to the RLC parallel circuit with $R = 200 \Omega$, $C = 25 \mu\text{F}$, and $L = 800 \text{ mH}$. Given that the

equivalent impedance is
$$Z_{eq} = \frac{(Z_R + Z_c)Z_L}{(Z_R + Z_c) + Z_L}$$
, find

- a) Z_{eq} in polar form
- b) I the complex current in polar form
- c) $i(t)$ the total current as a function of time

Impedances for AC circuit elements:
$$Z_R = R$$
,
$$Z_c = \frac{-j}{\omega C}$$
, and
$$Z_L = j\omega L$$

Complex form of Ohm's Law:
$$V = IZ$$