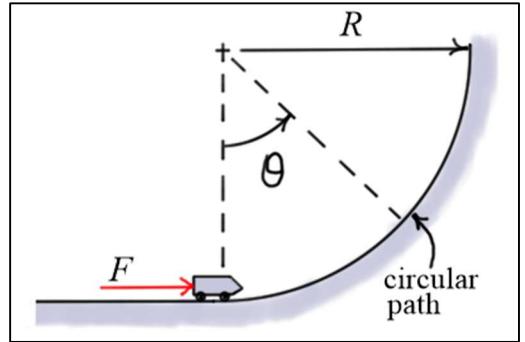


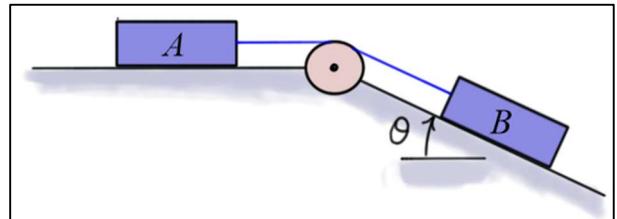
Elementary Dynamics

Exercises #5 – Work/Energy, Conservation of Energy, Newton's Laws for Particle Motion


1. A 175 (lb) bungee jumper jumps off a bridge with a bungee cord attached to his legs. The stiffness of the bungee cord is $k = 15$ (lb/ft), and its unstretched length $L_u = 60$ (ft). Neglecting air resistance and assuming the jumper drops straight down, find: a) v_2 the velocity of the jumper after falling 100 (ft), b) a the acceleration of the jumper when at this point, and c) x_{\max} the maximum distance the jumper falls.

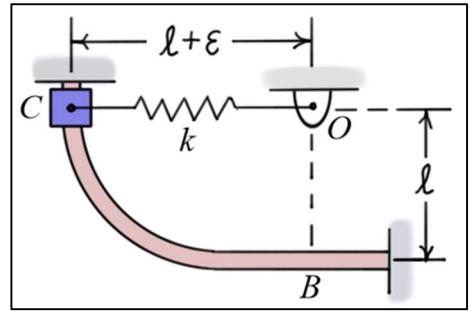
Answers:

a) $v_2 \approx 45$ (ft/s); b) $a \approx 78.2$ (ft/s²) upward; c) $x_{\max} \approx 111$ (ft)


2. The rocket propelled cart is launched on a circular path of radius $R = 15$ (m). It starts from rest at the bottom of the path ($\theta = 0$). The mass of the cart is $m = 200$ (kg) and the thrust F is assumed to be a constant 4000 (N) and tangent to the path. Neglecting friction and air resistance, at $\theta = 60$ (deg) find: a) v the velocity of the cart, b) N the normal force exerted by the path on the cart, and c) a_t the tangential acceleration of the cart.

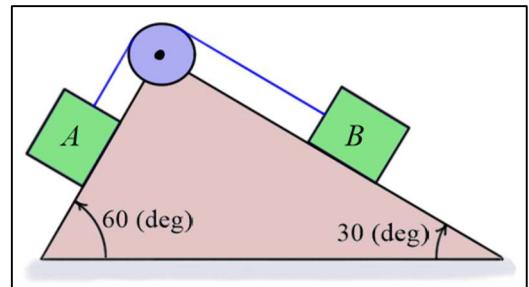
Answers:

a) $v \approx 21.9$ (m/s); b) $N \approx 7.4$ (kN); c) $a_t \approx 11.5$ (m/s²)


3. The two weights A and B are connected by a **light** cable and pulley system. The weights of A and B are $W_A = 100$ (lb) and $W_B = 200$ (lb), the kinetic coefficient of friction between A and the horizontal plane is $\mu_k = 0.3$, and the angle of the inclined plane is $\theta = 30$ (deg). The **inclined plane** is **frictionless**. Given the system **starts from rest**, find: a) v the velocity of the blocks after they move 5 (ft), and b) T the tension in the cable.

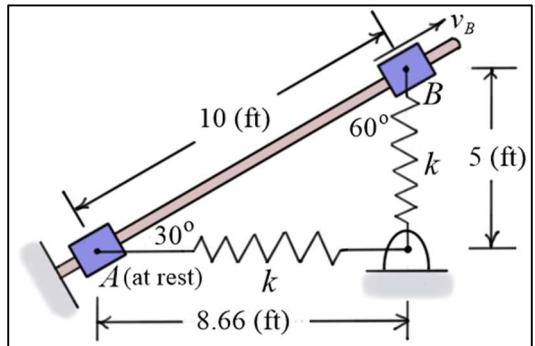
Answers:

a) $v \approx 8.67$ (ft/s); b) $T \approx 53.3$ (lb)


4. The 2 (kg) collar C is *released from rest* in the position shown, and it slides along the smooth, curved bar. Length $\ell = 0.1$ (m), and length $\varepsilon = 0.01$ (m). The linear spring has *unstretched length* $\ell_u = 0.1$ (m), so the spring is unstretched when the collar is at B . The spring has stiffness $k = 50,000$ (N/m). Find v the velocity of the collar when it reaches point B . The motion is in a *vertical* plane.

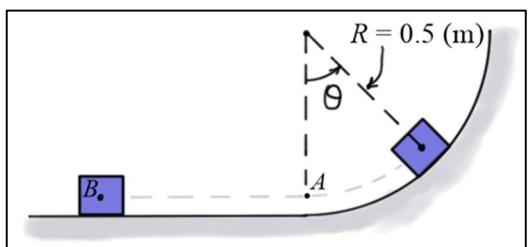
Answer:

$$v \approx 2.11 \text{ (ft/s)}$$


5. The system shown consists of two blocks A and B connected by a *light* cable and pulley system. Each block has mass $m = 5$ (kg), and the coefficient of kinetic friction between the blocks and the planes is $\mu_K = 0.1$. Assuming the system is *released from rest*, find v the velocity of the blocks after they have moved 0.75 (m).

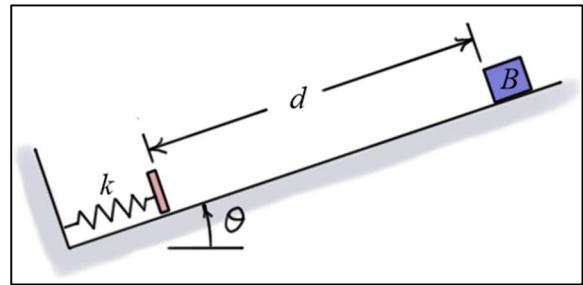
Answer:

$$v \approx 1.3 \text{ (m/s)}$$


6. The system shown consists of a smooth rod (oriented at 30 (deg) to the horizontal) and a collar. The collar is *released from rest* in position A and slides along the bar under the action of the spring and gravity. The collar weighs $W = 5$ (lb), and the spring stiffness is $k = 10$ (lb/ft). The spring has an unstretched length of 4 (ft). Find v_B the velocity of the collar when it reaches position B .

Answer:

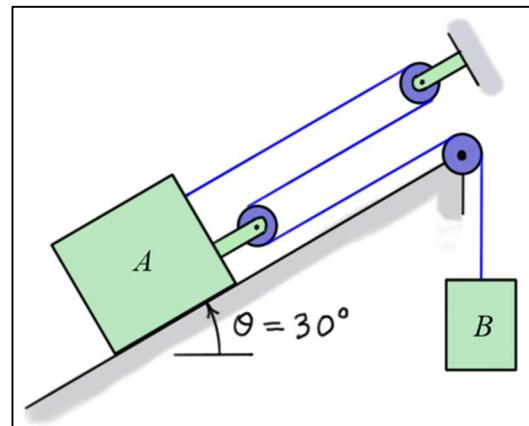
$$v_B \approx 31.8 \text{ (ft/s)}$$


7. Block B has a mass of 2 (kg) and has a velocity $v_A = 2$ (m/s) as it passes point A . Neglecting friction and the size of the block, at $\theta = 30$ (deg) find: a) v the velocity of B , b) \dot{v} the time rate of change of the velocity, and c) F_n the normal force the ground exerts on the block.

Answers:

a) $v \approx 1.64$ (m/s); b) $\dot{v} \approx -4.91$ (m/s²) (slowing down); c) $F_n \approx 27.7$ (N)

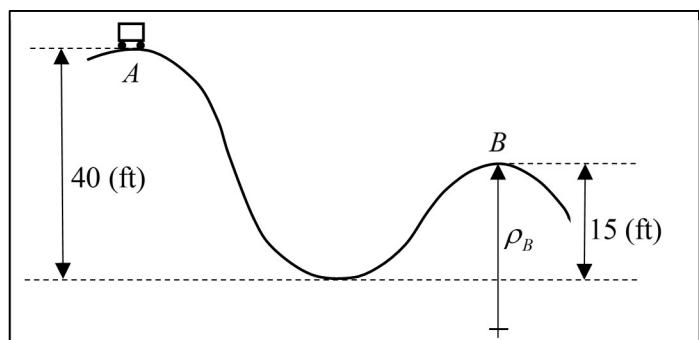
8. Block B of mass 4 (kg) is **released from rest** in the position shown with $d = 2$ (m), slides down the incline, and compresses the spring of stiffness $k = 10,000$ (N/m). The plane is inclined at an angle of $\theta = 30$ (deg), and the coefficient of kinetic friction between the block and the plane is $\mu_k = 0.2$.



Find: a) v the velocity of the block **just before** it hits the spring, and b) e_{\max} the maximum deflection of the spring. Neglect the size of the block and the work done by the weight and friction forces during the compression of the spring.

Answers:

a) $v \approx 3.58$ (m/s); b) $e_{\max} \approx 71.6$ (mm)


9. The system shown consists of two blocks A and B connected by a **light** cable and pulley system. Block A weighs $W_A = 50$ (lb), and block B weighs $W_B = 20$ (lb). The coefficient of friction between block A and plane is $\mu_k = 0.2$. When the system is **released from rest**, block A is observed to move **up the plane**. Find: a) a relationship between the velocities of the two blocks as determined by the pulley system, b) v the velocity of block A after it moves 3 feet **up** the plane, and c) T the tension in the cable.

Answers:

a) $v_B = 3v_A$; b) $v \approx 4.7$ (ft/s); c) $T \approx 13.1$ (lb)

10. A 2000 (lb.) cart **coasts** along the vertical track from A to B . The cart's velocity at A is $v_A = 5$ (ft/s). Neglecting friction, find: a) v_B the velocity of the cart when it reaches point B , b) N the **normal force** the track exerts on the cart at B assuming the **radius of curvature** of the track at B is $\rho_B = 100$ (ft), and

c) $(\rho_B)_{\min}$ the **minimum radius of curvature** of the track at B so the cart does not leave the track.

Answers:

a) $v_B \approx 40.4$ (ft/s); b) $N \approx 984$ (N); c) $(\rho_B)_{\min} \approx 50.8$ (ft)