
## Elementary Statics

### Position Vectors, Unit Vectors, and Forces Acting Along Lines

#### Position Vectors and Unit Vectors

- The diagram shows two **points**  $A$  and  $B$  and their **coordinates** relative to a known origin.
- The **position vectors** of the two points relative to the origin of the  $XYZ$  axes are

$$\begin{aligned}\underline{r}_A &= x_A \underline{i} + y_A \underline{j} + z_A \underline{k} \\ \underline{r}_B &= x_B \underline{i} + y_B \underline{j} + z_B \underline{k}\end{aligned}$$



- Using the concept of **vector addition**, we can write:

$$\underline{r}_B = \underline{r}_A + \underline{r}_{B/A}$$

- Here, the vector  $\underline{r}_{B/A}$  represents the **position vector** of  $B$  **relative** to  $A$ .
- So, given the coordinates of  $A$  and  $B$ , we can find the vector  $\underline{r}_{B/A}$  as follows

$$\underline{r}_{B/A} = \underline{r}_B - \underline{r}_A = (x_B - x_A) \underline{i} + (y_B - y_A) \underline{j} + (z_B - z_A) \underline{k}$$

- The diagram also shows a **unit vector**  $\underline{u}$  which points in the **direction** of  $\underline{r}_{B/A}$ . We can calculate  $\underline{u}$  by dividing  $\underline{r}_{B/A}$  by its magnitude

$$\underline{u} = \frac{\underline{r}_{B/A}}{|\underline{r}_{B/A}|} = \frac{(x_B - x_A)}{|\underline{r}_{B/A}|} \underline{i} + \frac{(y_B - y_A)}{|\underline{r}_{B/A}|} \underline{j} + \frac{(z_B - z_A)}{|\underline{r}_{B/A}|} \underline{k}$$

- The magnitude of  $\underline{r}_{B/A}$  is  $|\underline{r}_{B/A}| = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$
- The **angles** that  $\underline{u}$  makes with the  $X$ ,  $Y$ , and  $Z$  axes are

$$\theta_x = \cos^{-1} \left( \frac{(x_B - x_A)}{|\underline{r}_{B/A}|} \right) \quad \theta_y = \cos^{-1} \left( \frac{(y_B - y_A)}{|\underline{r}_{B/A}|} \right) \quad \theta_z = \cos^{-1} \left( \frac{(z_B - z_A)}{|\underline{r}_{B/A}|} \right)$$

#### Forces Acting Along Lines

- If a force  $\underline{F}$  acts along the line from  $A$  to  $B$ , we can write

$$\underline{F} = |\underline{F}| \underline{u}$$

### Example #1:

Given: Coordinates of  $A$  and  $B$ :  $A(8, 2, 4)$  (ft) and  $B(3, 6, 12)$  (ft)

Force  $\tilde{F}$  of magnitude 200 (lb) acts along the line from  $A$  to  $B$

Find:  $\tilde{r}_{B/A}$  the position vector of  $B$  relative to  $A$ ;  $\tilde{u}$  the unit vector that points along the line  $AB$ , and the force  $\tilde{F}$ , and the angles that  $\tilde{F}$  makes with the  $X$ ,  $Y$ , and  $Z$  axes.

Solution:

$$\tilde{r}_{B/A} = (3-8)\hat{i} + (6-2)\hat{j} + (12-4)\hat{k} = -5\hat{i} + 4\hat{j} + 8\hat{k}$$

$$|\tilde{r}_{B/A}| = \sqrt{5^2 + 4^2 + 8^2} = 10.247 \text{ (ft)}$$

$$\tilde{u} = \left(\frac{-5}{10.247}\right)\hat{i} + \left(\frac{4}{10.247}\right)\hat{j} + \left(\frac{8}{10.247}\right)\hat{k} = -0.4880\hat{i} + 0.3904\hat{j} + 0.7807\hat{k}$$

$$\tilde{F} = 200\tilde{u} = -97.6\hat{i} + 78.1\hat{j} + 156\hat{k} \text{ (lb)}$$

$$\theta_x = \cos^{-1}(-0.4880) \approx 119 \text{ (deg)}, \quad \theta_y = \cos^{-1}(0.3904) \approx 67 \text{ (deg)}$$

$$\theta_z = \cos^{-1}(0.7807) \approx 38.7 \text{ (deg)}$$

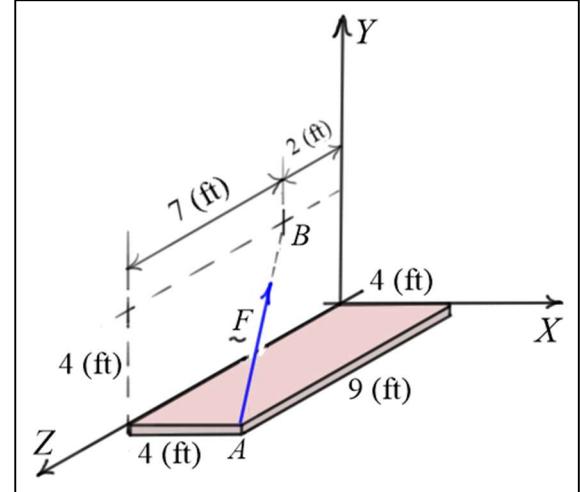
### Example #2:

Given: Force  $\tilde{F}$  of magnitude 450 (lb) acts on the rectangular door along the line from  $A$  to  $B$ .

Find: The  $XYZ$  components of  $\tilde{F}$ , and the angles that it makes with the  $X$ ,  $Y$ , and  $Z$  axes.

Solution:

$$\tilde{r}_{B/A} = (0-4)\hat{i} + (4-0)\hat{j} + (2-9)\hat{k} = -4\hat{i} + 4\hat{j} - 7\hat{k}$$


$$|\tilde{r}_{B/A}| = \sqrt{4^2 + 4^2 + 7^2} = 9 \text{ (ft)}$$

$$\tilde{u} = -\left(\frac{4}{9}\right)\hat{i} + \left(\frac{4}{9}\right)\hat{j} - \left(\frac{7}{9}\right)\hat{k}$$

$$\tilde{F} = 450\tilde{u} = 450\left[-\left(\frac{4}{9}\right)\hat{i} + \left(\frac{4}{9}\right)\hat{j} - \left(\frac{7}{9}\right)\hat{k}\right] = -200\hat{i} + 200\hat{j} - 350\hat{k} \text{ (lb)}$$

$$\theta_x = \cos^{-1}\left(\frac{-4}{9}\right) \approx 116.388 \approx 116 \text{ (deg)}, \quad \theta_y = \cos^{-1}\left(\frac{4}{9}\right) \approx 63.6122 \approx 63.6 \text{ (deg)},$$

$$\theta_z = \cos^{-1}\left(\frac{-7}{9}\right) \approx 141.058 \approx 141 \text{ (deg)}$$

