

Elementary Statics

Equivalent Force Systems

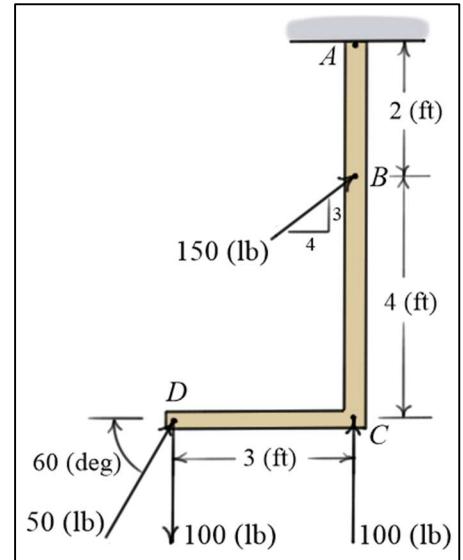
- Two systems of forces and couples are called *equivalent force systems* if the two systems have the *same resultant force* and the *same resultant moment* about *any point*.
- This idea can be used to *reduce* a *system* of forces and couples to a *single force-couple system* acting at some point O . The *single force* (\tilde{F}) is the *resultant force* of the system, and the *single couple-moment* (\tilde{M}_O) is the *sum* of the *moments* of *all the forces* about O *plus* the *sum* of *all* the *couple-moments*.

$$\boxed{\begin{aligned}\tilde{F} &= \tilde{F}_R = \sum_i \tilde{F}_i \\ \tilde{M}_O &= (\tilde{M}_O)_R = \sum_{\text{forces } (i)} (\tilde{r}_i \times \tilde{F}_i) + \sum_{\text{couples } (i)} (\tilde{M}_C)_i\end{aligned}}$$

- If we are studying the *external forces* acting on a body, we *can* use *equivalent force systems* to *simplify* our work.
- If we are studying the *internal forces* within a body, we need to be careful when using equivalent force systems. The equivalent force systems must produce the same internal effects.

Example #1:

Given: system of forces shown


Find: Equivalent force-couple system at A

Solution:

Force acting at A :

$$\begin{aligned}\tilde{F}_R &= \tilde{F}_B + \tilde{F}_D = 150\left(\frac{4}{5}\hat{i} + \frac{3}{5}\hat{j}\right) + 50\left(\cos(60)\hat{i} + \sin(60)\hat{j}\right) \\ &= (120 + 50(\frac{1}{2}))\hat{i} + (90 + 50(\frac{\sqrt{3}}{2}))\hat{j} \\ \Rightarrow \boxed{\tilde{F}_R \approx 145\hat{i} + 133\hat{j}}\end{aligned}$$

Corresponding couple-moment:

$$\begin{aligned}\tilde{M}_C &= \sum \tilde{M}_A = \left[2\left(\frac{4}{5}(150)\right) + 6(50\cos(60)) - 3(50\sin(60)) + 3(100) \right] \hat{k} \text{ (ft-lb)} \\ &\approx [240 + 150 - 129.904 + 300] \hat{k} \text{ (ft-lb)} \\ \Rightarrow \boxed{\tilde{M}_C \approx 560\hat{k} \text{ (ft-lb)}}\end{aligned}$$

Example #2:

Given: The 12-foot beam is fixed into the wall at O and is subjected to its weight of 100-pound and the 140-pound cable force at A .

Find: Equivalent force and couple-moment load at O .

Solution:

Force acting at O :

$$\begin{aligned} \mathbf{F}_R &= 140 \left[\left(-12\mathbf{i} + 4\mathbf{j} - 6\mathbf{k} \right) / \sqrt{12^2 + 4^2 + 6^2} \right] - 100\mathbf{j} \\ &= 140 \left[\left(-12\mathbf{i} + 4\mathbf{j} - 6\mathbf{k} \right) / 14 \right] - 100\mathbf{j} = \left(-120\mathbf{i} + 40\mathbf{j} - 60\mathbf{k} \right) - 100\mathbf{j} \\ \Rightarrow \boxed{\mathbf{F}_R = -120\mathbf{i} - 60\mathbf{j} - 60\mathbf{k}} \text{ (lb)} \end{aligned}$$

Corresponding couple-moment:

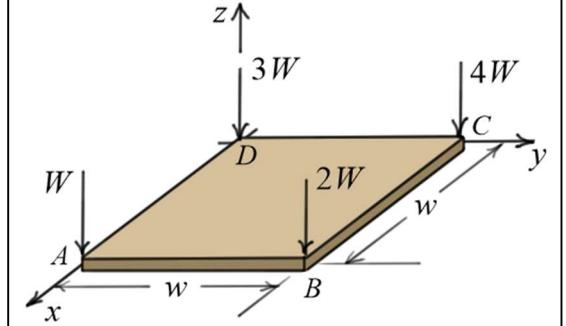
$$\begin{aligned} \mathbf{M}_C &= \sum \mathbf{M}_O = \left[(6\mathbf{i}) \times (-100\mathbf{j}) \right] + \left[(12\mathbf{i}) \times (-120\mathbf{i} + 40\mathbf{j} - 60\mathbf{k}) \right] \\ &= [-600\mathbf{k}] + [12(40)\mathbf{k} + 12(60)\mathbf{j}] \\ \Rightarrow \boxed{\mathbf{M}_C = 720\mathbf{j} - 120\mathbf{k}} \text{ (ft-lb)} \end{aligned}$$

Example #3:

Given: The square plate supports four loads as shown.

Find: The resultant load and where it acts on the plate.

Solution:


Resultant Force:

$$\boxed{\mathbf{F}_R = -(1+2+4+3)W\mathbf{k} = -10W\mathbf{k}}$$

Resultant Moment about D :

$$\begin{aligned} \mathbf{M}_D &= [w\mathbf{i} \times -W\mathbf{k}] + \left[(w\mathbf{i} + w\mathbf{j}) \times -2W\mathbf{k} \right] + \left[w\mathbf{j} \times -4W\mathbf{k} \right] \\ &= [wW\mathbf{j}] + [2wW\mathbf{j} - 2wW\mathbf{i}] + [-4wW\mathbf{i}] \quad \Rightarrow \boxed{\mathbf{M}_D = -6wW\mathbf{i} + 3wW\mathbf{j}} \end{aligned}$$

If \mathbf{F}_R is located at the coordinates (\hat{x}, \hat{y}) on the plate relative to D , its moment about D can be calculated as follows.

$$\underline{M}_D = (\hat{x}\underline{i} + \hat{y}\underline{j}) \times (-10W\underline{k}) = -10\hat{y}W\underline{i} + 10\hat{x}W\underline{j}$$

Equating the two expressions \underline{M}_D gives

$$-10\hat{y} = -6w \Rightarrow \boxed{\hat{y} = 0.6w}$$

$$10\hat{x} = 3w \Rightarrow \boxed{\hat{x} = 0.3w}$$