

Elementary Statics

Static Equilibrium of a Rigid Body

- The diagram shows a **rigid body** under the action of a system of N **forces**. Pairs of forces within the system may form **couples**.
- For the body to be in **static equilibrium** (meaning that it remains **stationary**), the following conditions must be met.

$$\begin{aligned} \sum_i \mathbf{F}_i &= \mathbf{0} \\ \sum_i (\mathbf{p}_i \times \mathbf{F}_i) &= \mathbf{0} \quad (P \text{ is any point}) \end{aligned}$$

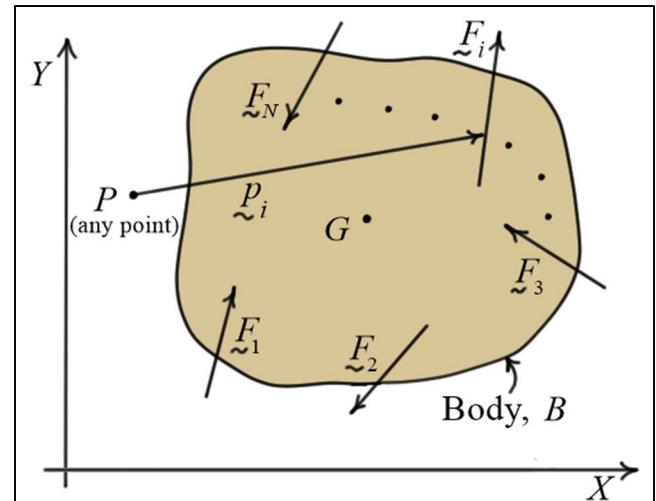


Fig. 1 Rigid Body with Applied Forces

- The **first** of these equations requires the **sum** of **all forces acting** on the body be **zero**. Physically, this means the **body will not translate**.
- The **second** set of these equations requires the **sum of the moments of those forces** about **any point P** also be **zero**. Physically, this means the **body will not rotate**.
- If a body cannot **translate** or **rotate**, then it must **remain stationary** (in **static equilibrium**).
- Note that the diagram shows the body **free from its supports**, and as such, it is referred to as a **free body diagram**.
- A **free body diagram** that **depicts** the **correct nature** of the **forces acting on a body** is critical in providing **accurate** and **meaningful estimates** of those forces.
- In **two dimensional** problems, the **scalar equations of equilibrium** can be written in **any of the following three ways**. When using the **second set** of equations, the **line passing through the points P and Q cannot be perpendicular to** the chosen force summation direction. When using the **third set**, the points P , Q , and R **cannot be collinear**.

$$\begin{aligned} \sum F_x &= 0 \\ \sum F_y &= 0 \\ \sum M_P &= 0 \end{aligned}$$

or

$$\begin{aligned} \sum F_x &= 0 & \text{-or-} & \sum F_y = 0 \\ \sum M_P &= 0 \\ \sum M_Q &= 0 \end{aligned}$$

or

$$\begin{aligned} \sum M_P &= 0 \\ \sum M_Q &= 0 \\ \sum M_R &= 0 \end{aligned}$$

- **Moment equations** are often *preferred*, because they allow us to *solve more easily* for the unknown forces or unknown moments.

Typical Supports

- **Supports** are used to keep a body in *static equilibrium*, and to do so, they can *apply forces* and/or *couples* to the body. It is *important* when solving static equilibrium problems to be *clear about the nature of these forces and couples*.
- Supports that *restrict* the *translation* of some point on the body *apply a force* to the body at that point and supports that *restrict* the *rotation* of the body *apply a couple* to the body at that point.

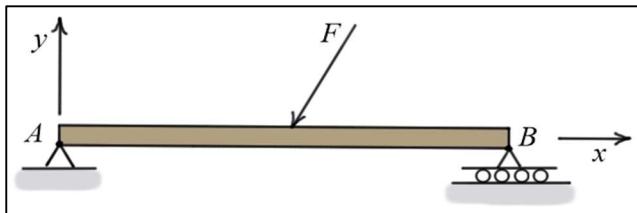


Fig. 2 Simply Supported Beam

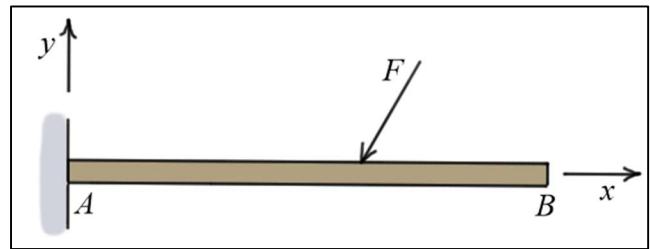


Fig. 3 Cantilevered Beam

- The support on the *left end* of the *cantilevered beam* is called a *fixed support*. It restricts the *movement* of *A* in both the *X* and *Y* directions, and it restricts the *rotation* of the beam at *A*. To do so, it can produce *forces* in the *X* and *Y* directions and a *couple moment* in the *Z* direction.
- The support on the *left end* of the *simply supported beam* is called a *pin support*. It restricts the *movement* of *A* in both the *X* and *Y* directions. To do so, it can produce *forces in each of these directions*.
- The support on the *right end* of the *simply supported beam* is called a *roller support*. It restricts the *movement* of *B* only in the *negative Y* direction. To do so, it can produce a *force* in the *positive Y* direction.
- The figure at the right depicts two members connected by a *collar joint*. Assuming friction is negligible, the joint can produce *forces* in the *Y* and *Z* directions, but not in the *X* direction. It is also capable of producing *couple moments* in the *Y* and *Z* directions, but not in the *X* direction.

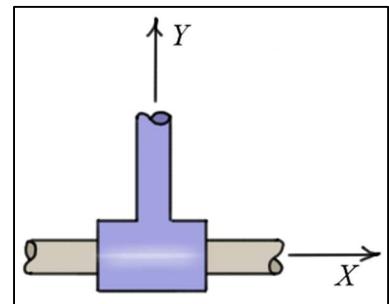


Fig. 4 Collar Joint

- There are **many types of supports**. Refer to your **textbook** for a more **detailed list**.

Sufficient Supports, Redundant Supports, and Improper Supports

- A body is considered to have **sufficient supports** if it has **just enough** supports to **maintain its equilibrium**. That is, it has just enough supports to **keep it from translating** in any direction and to **keep it from rotating about any axis**. In this case, the system is **statically determinate**, meaning that we can find the support forces **using the equations of statics alone**.
- A body has **redundant supports** if it has **more than enough supports** to maintain its equilibrium. In this case, the system is **statically indeterminate**, meaning that we cannot find the support forces using the equations of statics alone. We need to include **additional equations** associated with the internal forces/displacements in the body.
- If a body is **improperly supported**, then it **does not have sufficient supports** to maintain its equilibrium.

Two-Force and Three-Force Members

- If a body is acted upon by only **two or three forces**, we can **simplify** the static equilibrium **analysis**.
- If only **two forces** act on a body, then to satisfy equilibrium conditions, the forces must be **equal in magnitude** and **opposite in direction**. Many **structural members** are taken to be two-force members if their weights can be **neglected**.
- If **three forces** act on a body, then the **lines of actions** of the forces must either all **be parallel**, or they must **all intersect at a single point**.
- The diagram depicts a body of **weight** W being pushed along the floor by a **force** P . The **force** R represents the **resultant** of the **distributed normal** and **friction forces** exerted by the floor on the body. For the body to be in static equilibrium, the lines of action of the three forces must intersect at A .

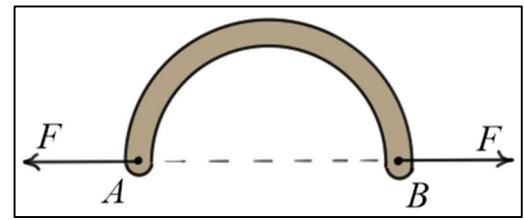


Fig. 5 Two Force Member

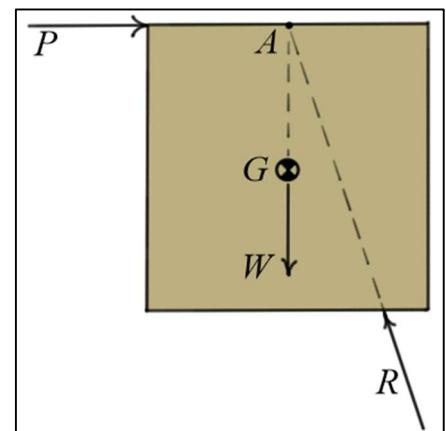


Fig. 6 Three-force Member

Example #1:

Given: L-shaped cantilevered bracket loaded as shown.

Neglect the weight of the bracket.

Find: Force and moment ceiling applies to bracket at A .

Solution:

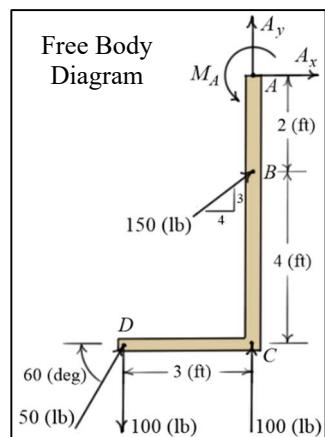
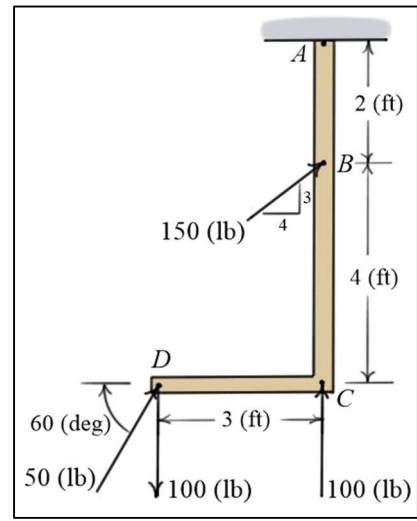
Equilibrium equations:

$$\sum F_x = A_x + \frac{4}{5}(150) + 50\cos(60) = 0$$

$$\Rightarrow A_x = -145 \text{ (lb)}$$

$$\sum F_y = A_y + \frac{3}{5}(150) + 50\sin(60) = 0$$

$$\Rightarrow A_y \approx -133.3 \approx -133 \text{ (lb)}$$



$$\textcircled{+} \sum M_A = M_A + \frac{4}{5}(150)(2) + (50\cos(60))(6) - (50\sin(60))(3) + (100)(3)$$

$$= M_A + 240 + 150 - 75\sqrt{3} + 300$$

$$\Rightarrow M_A \approx -560.09 \approx -560 \text{ (ft-lb)} \Rightarrow M_A \approx 560 \text{ (ft-lb) (clockwise)}$$

Example #2:

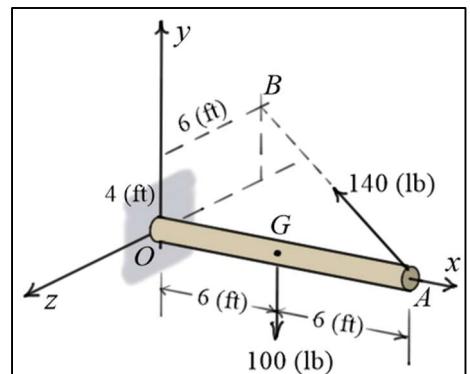
Given: Cantilevered beam loaded as shown.

Find: Force and moment wall exerts on beam at O .

Solution:

$$F_A = 140(-12\hat{i} + 4\hat{j} - 6\hat{k}) / \sqrt{12^2 + 4^2 + 6^2}$$

$$\Rightarrow F_A = -120\hat{i} + 40\hat{j} - 60\hat{k}$$



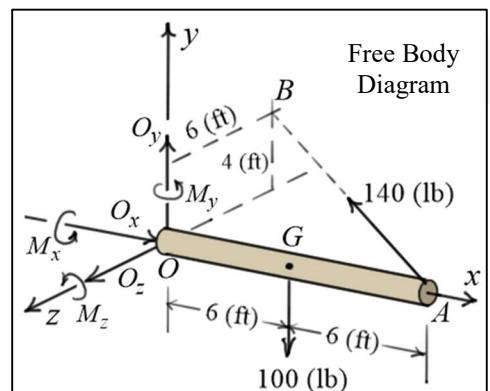
Equilibrium Equations:

$$\sum F_x = O_x - 120 = 0 \Rightarrow O_x = 120 \text{ (lb)}$$

$$\sum F_y = O_y + 40 - 100 = 0 \Rightarrow O_y = 60 \text{ (lb)}$$

$$\sum F_z = O_z - 60 = 0 \Rightarrow O_z = 60 \text{ (lb)}$$

$$F_O = 120\hat{i} + 60\hat{j} + 60\hat{k} \text{ (lb)}$$



$$\begin{aligned}
\sum M_O = 0 &= [M_x \dot{z} + M_y \dot{z} + M_z \dot{z}] + [r_{G/O} \times -100 \dot{z}] + [r_{A/O} \times F_A] \\
&= [M_x \dot{z} + M_y \dot{z} + M_z \dot{z}] + [6 \dot{z} \times -100 \dot{z}] + [12 \dot{z} \times (-120 \dot{z} + 40 \dot{z} - 60 \dot{z})] \\
&= [M_x \dot{z} + M_y \dot{z} + M_z \dot{z}] + [-600 \dot{z}] + [480 \dot{z} + 720 \dot{z}] \\
&= M_x \dot{z} + (M_y + 720) \dot{z} + (M_z - 600 + 480) \dot{z}
\end{aligned}$$

$$\Rightarrow [M_x = 0] \quad [M_y = -720 \text{ (ft-lb)}] \quad [M_z = 120 \text{ (ft-lb)}]$$

Example #3:

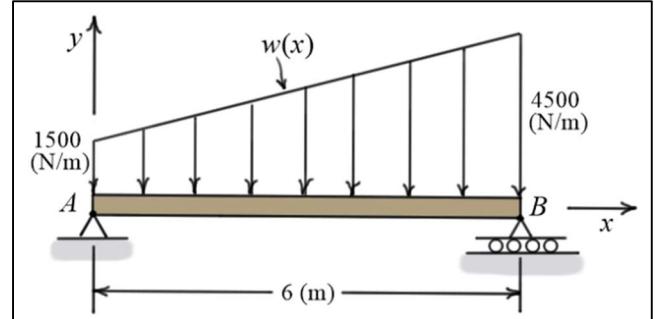
Given: Simply supported beam loaded as shown.

Find: Support forces at A and B .

Solution:

External Load:

Constant distributed load:



$$F_1 = -6(1500) \dot{z} = -9000 \dot{z} = -9 \dot{z} \text{ (kN)} \quad \text{acting at } \bar{x}_1 = 3 \text{ (m)} \text{ the midpoint of the beam}$$

Triangular distributed load:

$$F_2 = -\frac{1}{2}(6)(3000) \dot{z} = -9000 \dot{z} = -9 \dot{z} \text{ (kN)} \quad \text{acting at } \bar{x}_2 = \frac{2}{3}(6) = 4 \text{ (m)}.$$

Total load:

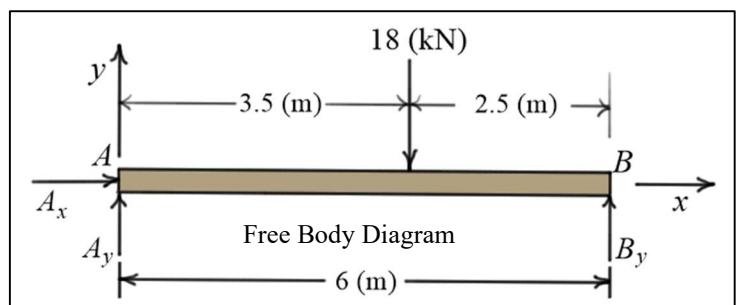
$$F_R = \sum_{i=1}^2 F_i = -18000 \dot{z} \text{ (N)} = -18 \dot{z} \text{ (kN)}$$

$$\bar{x} = \frac{1}{F_R} (F_1 \bar{x}_1 + F_2 \bar{x}_2) = \frac{1}{18} (9(3) + 9(4)) = \frac{7}{2} = 3.5 \text{ (m)}$$

Equilibrium Equations:

$$\sum F_x = A_x = 0$$

$$\begin{aligned}
\sum M_A &= 6B_y - 3.5(18) = 0 \\
\Rightarrow B_y &= 10.5 \text{ (kN)}
\end{aligned}$$



$$\sum F_y = A_y + B_y - 18 = 0 \Rightarrow A_y = 18 - B_y = 7.5 \text{ (kN)}$$

Example #4:

Given: L-shaped bracket loaded as shown.

Neglect the weight of the bracket.

Find: Reaction forces at *A* and *B*

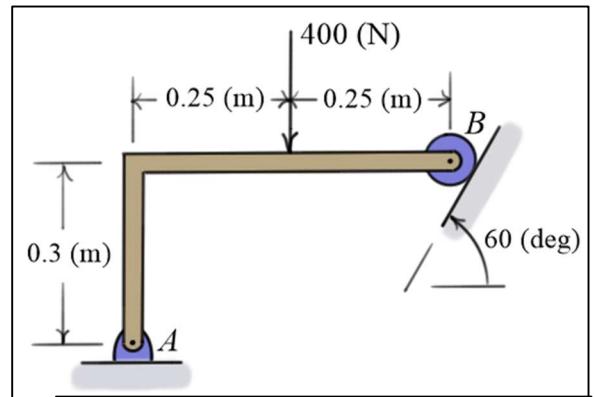
Solution:

Equilibrium Equations:

$$\sum F_x = A_x - B \sin(60) = 0$$

$$\sum F_y = A_y + B \cos(60) - 400 = 0$$

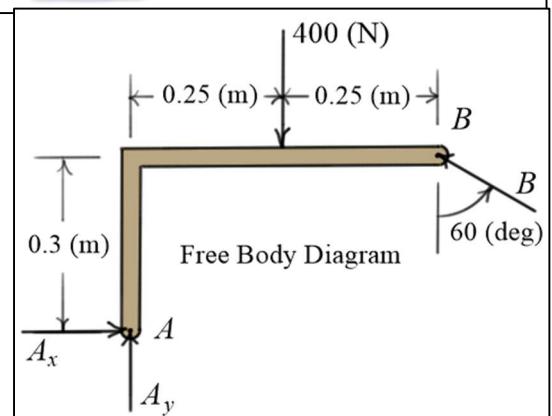
$$\sum M_A = 0.5 \cos(60)B + 0.3 \sin(60)B - 0.25(400) = 0$$



The moment equation can be simplified to give

$$B = \frac{0.25(400)}{0.5 \cos(60) + 0.3 \sin(60)} \approx \frac{100}{0.509808}$$

$$\Rightarrow B \approx 196.152 \approx 196 \text{ (N)}$$



Substituting back into the two force equations gives

$$A_x = B \sin(60) \approx 169.87 \approx 170 \text{ (N)}$$

$$A_y = 400 - B \cos(60) \approx 301.924 \approx 302 \text{ (N)}$$

Note that even though the load is vertical, the angle of the support at *B* induces horizontal reactions.