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Elementary Statics 
Moments of Inertia of Areas 

Definition 

o The figure depicts an area, A in the xy-plane. The 

distributions of this area relative to the x and y axes are 

measured by the moments of inertia of the area about 

these axes. 

o The moments of inertia of A about the x and y axes are 

defined as 

 2
x A

I y dA   2
y A

I x dA  

o These inertias are always positive. The units are those of 4L  (m4, mm4, ft4, in4, etc.). 

o The larger the inertia, the farther the area is from the axis. The smaller the inertia, the closer 

it is to the axis. 

Parallel Axes Theorem 

o The moment of inertia of an area about any axis is related 

to the moment of inertia about an axis parallel to it and 

passing through the centroid C  by the parallel axes 

theorem. 

 2
'

C
x x yI I Ad   2

'
C

y y xI I Ad   

o It is clear from the parallel axes theorem that the minimum 

moments of inertia of an area occur about its centroidal 

axes, because the quantity 2 0aAd  .  

o The moments of inertia about centroidal axes can often be found in inertia tables such as the 

ones in your textbook and other references. 

Radius of Gyration 

o The radius of gyration ak  of an area about axis a  is defined as: a
ak

I
A . 

o The units of ak  are those of length (m, mm, ft, in, etc.). 
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Example #1: 

 Given: Shaded area under the curve ( ) 2y x x  

in the range 0 4x  .  

 Find: xI  and yI  the moments of inertia of the 

shaded area about the x and y axes. 

Solution using dA dx dy  : 
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Solution for xI  using  21
44dA y dy   : 
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Solution for yI  using (2 )dA x dx  :  
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Composite Shapes 

o The figure depicts a C-shaped area which has been 

divided into three rectangular areas 1A , 2A , and 3A  

with centroids 1C , 2C , and 3C . 

o The moment of inertia of the composite area about an 

axis is simply the sum of the inertias of the individual 

areas about that axis. So, for the inertia about the x-axis, 

we have 

  
3

1
i

x x A
i

I I


   

o The inertia tables and the parallel axes theorem can be used to find the inertias of each of the 

individual areas about the specified axis. 

o  For example,    1

1 11 1

2
1

C

x x yA A
I I A d  . Here,  1

1
1

C

x
A

I   is the moment of inertia of area 1A  about 

an x-axis passing through its centroid 1C , and 
1yd  is the distance between the x-axis passing 

through 1C  and the x-axis. 

o The moment of inertia of the composite area about its centroidal axes can be related to the 

moments of inertia of the area about non-centroidal axes using the parallel axes theorem. 

 2C
x x yI I Ad    
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Example #2: 

 Given: Area shown 

 Find: a) Location of the centroid C 

   b) 'xI  and 'yI  the moments of inertia 

about the 'x  and 'y  axes 

Solution: 

 In this solution, the shape shown in the first diagram will 

be thought of as the combination of two shapes. The 

80 120 (mm)  blue rectangular area in the second diagram 

will be removed from a 120 180 (mm)  rectangular area. 

a) Centroid: (relative to the lower left corner) 

 Let 1A  represent the 120 180 (mm)  rectangular area 

and 2A  represent the 80 120 (mm)  rectangular area. 

 

   
   

2

1
2

1

60 120 180 80 80 120 528000

120 180 80 120 12000

44 (mm)

i i
i

i
i

x A
x

A

x





  
  

  

 



   

 
   
   

2

1
2

1

90 120 180 90 80 120
90 90 (mm)

120 180 80 120

i i
i

i
i

y A
y y

A





  
    

  




  

 The result for y  can also be inferred by noting the shape is symmetrical about a plane cutting 

the shape half way up the vertical side, that is, at 90 (mm)y   . 

b) Moments of Inertia: 

 The x  axis is a centroidal axis for both rectangular shapes, so there is no need for the parallel 

axes theorem. Using a table of inertias, 
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 The y  axis is not a centroidal axis for either of the two rectangular shapes, so the parallel 

axes theorem must be used. 
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