Elementary Statics
Moments of Inertia of Areas

Definition

o The figure depicts an area, A in the xy-plane. The | )

. . . : Y Area, A4
distributions of this area relative to the x and y axes are

measured by the moments of inertia of the area about

these axes. X

o The moments of inertia of A about the x and y axes are

defined as v
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o These inertias are always positive. The units are those of L* (m*, mm?, ft*, in*, etc.).
o The larger the inertia, the farther the area is from the axis. The smaller the inertia, the closer
it is to the axis.

Parallel Axes Theorem

o The moment of inertia of an area about any axis is related A

to the moment of inertia about an axis parallel to it and V d,

passing through the centroid C by the parallel axes \
x'o

theorem.

C 2 C 2
[ .=1.+A4d] I,=1,+Ad;

) .. Area, 4
o Itis clear from the parallel axes theorem that the minimum

moments of inertia of an area occur about its centroidal B —5

axes, because the quantity Ad> > 0.

o The moments of inertia about centroidal axes can often be found in inertia tables such as the
ones in your textbook and other references.

Radius of Gyration

o The radius of gyration k, of an area about axis a is defined as: |k, = ,[% :

o The units of k, are those of length (m, mm, ft, in, etc.).
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Example #1:

Given: Shaded area under the curve y(x)= 2x

in the range 0 < x <4.

Find: [ and /, the moments of inertia of the
shaded area about the x and y axes.
Solution using dA =dxxdy: ‘
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Solution for 7 using dA4 =(4—%y2)xdy: ¢
4 A > =3y
A 2 _ 2(4 _1.,2 (4,3 _ 1.5 "
L2[[y dA—gy (4-40%)dv=(41" -%"),
4 4 _
- () () ;.
= |1, ~34.1333~34.1 (in*) 5 dy
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Solution for 7, using dA=(2 Jx)x dx: )

4 4 3:,2{?'
I = ijsz = Ix2(2 x”z)dx: j2x5/2 dx
0 0

_ (2(%))67/2)2 _ (%)47/2

= |1, =73.1429~73.1 (in*) 15 o

y (in)

0 0.5 1 1.5 2 25 3 35 4

Composite Shapes

o The figure depicts a C-shaped area which has been 1 4
1/‘

divided into three rectangular areas A,, A,, and A4, | [

with centroids C,, C,, and C,.

¥
o The moment of inertia of the composite area about an {;. § IC_>

axis is simply the sum of the inertias of the individual

areas about that axis. So, for the inertia about the x-axis, )

we have L]

I, = 2(1x)/1,.

1

o]
=
Y

o The inertia tables and the parallel axes theorem can be used to find the inertias of each of the

individual areas about the specified axis.

o Forexample, |(/ )A = (IC,‘) + Aldy2 . Here, (Ixc,l) 1s the moment of inertia of area A, about
| 4, 1 1/ 4,

an x-axis passing through its centroid C,, and d is the distance between the x-axis passing
through C, and the x-axis.

o The moment of inertia of the composite area about its centroidal axes can be related to the

moments of inertia of the area about non-centroidal axes using the parallel axes theorem.

I, =1;+4d;
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Example #2:

Given: Area shown KT
Find: a) Location of the centroid C
b) 7. and [, the moments of inertia

180 (mm)
about the x' and y' axes

Solution:

In this solution, the shape shown in the first diagram will v

be thought of as the combination of two shapes. The

80x120 (mm) blue rectangular area in the second diagram
will be removed from a 120x180 (mm) rectangular area.

a) Centroid: (relative to the lower left corner)
180 (mm)

Let A, represent the 120x180 (mm) rectangular area

and A4, represent the 80x120 (mm) rectangular area.

30 (mm)

T—

2
LA ~ 60(120x180) —80(80x120) 528000
iA‘ (120x180)—(80x120) 12000

= |X =44 (mm)

2
__;yfAi _90(120><180)—9O(80><120)_90 —[5'=90 ()
- s, (120x180)-(80x120) —

The result for y can also be inferred by noting the shape is symmetrical about a plane cutting
the shape half way up the vertical side, that is, at y =90 (mm) .

b) Moments of Inertia:
The x" axis is a centroidal axis for both rectangular shapes, so there is no need for the parallel

axes theorem. Using a table of inertias,

(1, )Al = Lbh* =1.(120)180° ~5.832x107 (mm*)
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(1), =&bh =5(80)120° ~1.152x107 (mm*)

1 A2

), —(1,), =5.832x10"-1.152x10" =1, =4.68x10” (mm*)

The )’ axis is not a centroidal axis for either of the two rectangular shapes, so the parallel

axes theorem must be used.

1) =(19) +4,(d ) =Lbh+4,(d, ) =L1(120°)180 +(120x180)(60 — 44)’
Y74 N )4, i 7 ( )( )

=2.592x10" +5.5296 x10°

(Iy’)A

2

=5.12x10°+1.24416x10’

1 AZ

=

=

I,=(1,), =(1,), =3.14496x10"~1.75616x10" =>|I,=13888x10" (mm")

(Iy,)Al =3.14496x107 (mm*)

=(1%), +4,(d,) =50h+ 4,(d, ) =5(80")120 +(80x120)(80 — 44)’

(Iy,)Al =1.75616x10" (mm*)
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