

Elementary Statics

Equation Sheet #4: Moments of Couples/Equivalent Force Systems/Rigid Body Equilibrium

Moment of a Couple: $M_C = \mathbf{F} \cdot \mathbf{d}$ $\mathbf{M}_C = \mathbf{r} \times \mathbf{F}$

Equivalent Force Systems

$$\mathbf{F} = \mathbf{F}_R = \sum_i \mathbf{F}_i \quad (\text{acting at O})$$

$$M_O = \sum_{\text{forces } (i)} (\mathbf{r}_i \times \mathbf{F}_i) + \sum_{\text{couples } (i)} (M_C)_i$$

Centroids of Areas

- Area, A : $\bar{x} = \frac{1}{A} \int_A x \, dA$ $\bar{y} = \frac{1}{A} \int_A y \, dA$

- Composite Area: $\bar{x} = \frac{\sum A_i \bar{x}_i}{\sum A_i}$ $\bar{y} = \frac{\sum A_i \bar{y}_i}{\sum A_i}$

Equivalent Force Systems for Distributed Loads

$$F_R = \sum F = \int_0^L w(x) \, dx$$

$$\bar{x} = \frac{1}{F_R} \int_0^L x \, w(x) \, dx$$

Rigid Body Equilibrium

Vector Equations:

$$\begin{aligned} \mathbf{F}_R &= \sum_i \mathbf{F}_i = \mathbf{0} \\ \mathbf{M}_P &= \sum_i (\mathbf{r}_i \times \mathbf{F}_i) = \mathbf{0} \end{aligned}$$

Scalar Equations in 2D:

$$\begin{array}{l} \sum F_x = 0 \\ \sum F_y = 0 \\ \sum M_P = 0 \end{array} \quad \text{or} \quad \begin{array}{l} \sum F_x = 0 \quad \text{-or-} \quad \sum F_y = 0 \\ \sum M_P = 0 \\ \sum M_Q = 0 \end{array} \quad \text{or} \quad \begin{array}{l} \sum M_P = 0 \\ \sum M_Q = 0 \\ \sum M_R = 0 \end{array} \quad (P, Q, R \text{ not colinear})$$

Scalar Equations in 3D:

$$\begin{array}{l} \sum F_x = 0 \\ \sum F_y = 0 \\ \sum F_z = 0 \end{array} \quad \text{and} \quad \begin{array}{l} \sum (M_P)_x = 0 \\ \sum (M_P)_y = 0 \\ \sum (M_P)_z = 0 \end{array}$$